Some new facts about sequential quadratic programming methods employing second derivatives

نویسندگان

  • Alexey F. Izmailov
  • Mikhail V. Solodov
چکیده

For the sequential quadratic programming method (SQP), we show that close to a solution satisfying the same assumptions that are required for its local quadratic convergence (namely, uniqueness of the Lagrange multipliers and the second-order sufficient optimality condition), the direction given by the SQP subproblem using the Hessian of the Lagrangian is a descent direction for the standard l1-penalty function. We emphasize that this property is not straightforward at all, because the Hessian of the Lagrangian need not be positive definite under these assumptions or, in fact, under any other reasonable set of assumptions. In particular, this descent property was not known previously, under any assumptions (even including the stronger linear independence constraint qualification, strict complementarity, etc.). We also check the property in question by experiments on nonconvex problems from the Hock–Schittkowski test collection for a model algorithm. While to propose any new and complete SQP algorithm is not our goal here, our experiments confirm that the descent condition, and a model method based on it, work as expected. This indicates that the new theoretical findings that we report might be useful for full/practical SQP implementations which employ second derivatives and linesearch for the l1-penalty function. In particular, our results imply that in SQP methods where using subproblems without Hessian modifications is an option, this option has a solid theoretical justification at least on late iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second order sensitivity analysis for shape optimization of continuum structures

This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

Solving A Fractional Program with Second Order Cone Constraint

We consider a fractional program with both linear and quadratic equation in numerator and denominator  having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a  second order cone programming (SOCP)  problem.  For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...

متن کامل

A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase

A sequential quadratic programming (SQP) method is presented that aims to overcome some of the drawbacks of contemporary SQP methods. It avoids the difficulties associated with indefinite quadratic programming subproblems by defining this subproblem to be always convex. The novel feature of the approach is the addition of an equality constrained phase that promotes fast convergence and improves...

متن کامل

On Sequential Quadratic Programming Methods Employing Second Derivatives

We consider sequential quadratic programming methods (SQP) globalized by linesearch for the standard exact penalty function. It is well known that if the Hessian of the Lagrangian is used in SQP subproblems, the obtained direction may not be of descent for the penalty function. The reason is that the Hessian need not be positive definite, even locally, under any natural assumptions. Thus, if a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2016